Sensorimotor rhythm-based brain-computer interface training: the impact on motor cortical responsiveness.
نویسندگان
چکیده
The main purpose of electroencephalography (EEG)-based brain-computer interface (BCI) technology is to provide an alternative channel to support communication and control when motor pathways are interrupted. Despite the considerable amount of research focused on the improvement of EEG signal detection and translation into output commands, little is known about how learning to operate a BCI device may affect brain plasticity. This study investigated if and how sensorimotor rhythm-based BCI training would induce persistent functional changes in motor cortex, as assessed with transcranial magnetic stimulation (TMS) and high-density EEG. Motor imagery (MI)-based BCI training in naïve participants led to a significant increase in motor cortical excitability, as revealed by post-training TMS mapping of the hand muscle's cortical representation; peak amplitude and volume of the motor evoked potentials recorded from the opponens pollicis muscle were significantly higher only in those subjects who develop a MI strategy based on imagination of hand grasping to successfully control a computer cursor. Furthermore, analysis of the functional brain networks constructed using a connectivity matrix between scalp electrodes revealed a significant decrease in the global efficiency index for the higher-beta frequency range (22-29 Hz), indicating that the brain network changes its topology with practice of hand grasping MI. Our findings build the neurophysiological basis for the use of non-invasive BCI technology for monitoring and guidance of motor imagery-dependent brain plasticity and thus may render BCI a viable tool for post-stroke rehabilitation.
منابع مشابه
Sources of Eeg Activity the Most Relevant to Performance of Brain-computer Interface Based on Motor Imagery
The paper examines sources of brain activity, contributing to EEG patterns which correspond to motor imagery during training to control brain-computer interface. To identify individual source contribution into electroencephalogram recorded during the training, Independent Component Analysis was used. Then those independent components for which the BCI system classification accuracy was at maxim...
متن کاملCortical effects of user training in a motor imagery based brain-computer interface measured by fNIRS and EEG
The present study aims to gain insights into the effects of training with a motor imagery (MI)-based brain-computer interface (BCI) on activation patterns of the sensorimotor cortex. We used functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG) to investigate long-term training effects across 10 sessions using a 2-class (right hand and feet) MI-based BCI in fifteen subj...
متن کاملParietofrontal integrity determines neural modulation associated with grasping imagery after stroke.
Chronic stroke patients with heterogeneous lesions, but no direct damage to the primary sensorimotor cortex, are capable of longitudinally acquiring the ability to modulate sensorimotor rhythms using grasping imagery of the affected hand. Volitional modulation of neural activity can be used to drive grasping functions of the paralyzed hand through a brain-computer interface. The neural substrat...
متن کاملThink to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke.
BACKGROUND AND PURPOSE Stroke is a leading cause of long-term motor disability among adults. Present rehabilitative interventions are largely unsuccessful in improving the most severe cases of motor impairment, particularly in relation to hand function. Here we tested the hypothesis that patients experiencing hand plegia as a result of a single, unilateral subcortical, cortical or mixed stroke ...
متن کاملA high performance sensorimotor beta rhythm-based brain-computer interface associated with human natural motor behavior.
UNLABELLED To explore the reliability of a high performance brain-computer interface (BCI) using non-invasive EEG signals associated with human natural motor behavior does not require extensive training. We propose a new BCI method, where users perform either sustaining or stopping a motor task with time locking to a predefined time window. Nine healthy volunteers, one stroke survivor with righ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neural engineering
دوره 8 2 شماره
صفحات -
تاریخ انتشار 2011